Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters (\AA^{2}) for (2)

$B_{\text {eq }}=\left(8 \pi^{2} / 3\right) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}$.				
	\boldsymbol{x}	y	z	$B_{\text {eq }}$
$\mathrm{Pt}(1)$	0	0	0	1.96 (1)
$\mathrm{Cl}(1)$	0.2563 (3)	0.0228 (2)	0.1491 (3)	3.82 (5)
S(1)	0.1400 (3)	-0.0297 (2)	-0.2270 (2)	2.86 (4)
C(1)	0.3077 (9)	-0.1367 (7)	-0.1855 (10)	3.9 (2)
C(2)	0.2128 (13)	-0.2371 (7)	-0.1270 (10)	4.4 (2)
C(3)	0.0483 (11)	-0.2442 (6)	-0.2345 (11)	3.7 (2)
C(4)	0.0508 (9)	-0.1458 (6)	-0.3523 (9)	3.0 (2)
C(5)	0.1873 (11)	-0.1635 (7)	-0.4675 (10)	4.0 (2)
C(6)	0.3542 (12)	-0.1572 (9)	-0.3607 (13)	5.4 (3)

Table 4. Selected geometric parameters $\left(\AA,{ }^{\circ}\right)$ for (2)

$\mathrm{Pt}(1)-\mathrm{Cl}(1)$	2.300 (2)	$\mathrm{Pt}(1)-\mathrm{S}(1)$	2.286 (2)
$\mathrm{S}(1)-\mathrm{C}(1)$	1.841 (8)	$\mathrm{S}(1)-\mathrm{C}(4)$	1.819 (7)
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{Cl}\left(1^{\text {i }}\right.$)	180.0	$\mathrm{C}(1)-\mathrm{S}(1)-\mathrm{C}(4)$	80.4 (3)
$\mathrm{Cl}(1)-\mathrm{Pt}(1)-\mathrm{S}(1)$	89.25 (8)	$\mathrm{S}(1)-\mathrm{Pt}(1)-\mathrm{S}\left(\mathrm{l}^{\text {i }}\right.$)	180.0
$\mathrm{Pt}(1)-\mathrm{S}(1)-\mathrm{C}(1)$	110.3 (3)	$\mathrm{Pt}(1)-\mathrm{S}(1)-\mathrm{C}(4)$	112.9 (2)
Symmetry code: (i) $-x,-y,-z$.			

The structures were solved by the heavy-atom method and refined by full-matrix least-squares calculations with nonH atoms anisotropic. Allowance was made for anomalous dispersion (Ibers \& Hamilton, 1964).

Data collection: MSC/AFC Diffractometer Control Software (Molecular Structure Corporation, 1988) for (1) and EnrafNonius CAD-4 Diffractometer Controlling Software (Schagen, Straver, van Meurs \& Williams, 1988) for (2). Data reduction: TEXSAN (Molecular Structure Corporation, 1992). Structure solution: DIRDIF PATTY (Beurskens et al., 1992). Structure refinement: TEXSAN. Molecular graphics: ORTEPII (Johnson, 1976). Preparation of material for publication: TEXSAN.

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada and Alberta Sulfur Research Ltd, Calgary, Alberta, for financial support.

Lists of structure factors, anisotropic displacement parameters, H -atom coordinates and complete geometry have been deposited with the IUCr (Reference: FG1033). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Bennett, M. J., Cotton, F. A., Weaver, D. L., Williams, R. J. \& Watson, W. H. (1967). Acta Cryst. 23, 788-796.

Beurskens, P. T., Admiraal, G., Beurskens, G., Bosman, W. P., GarciaGranda, S., Gould, R. O., Smits, J. M. M. \& Smykalla, C. (1992). The DIRDIF Program System. Technical Report. Crystallography Laboratory, Univ. of Nijmegen, The Netherlands.
Bugarcic, Z., Louquist, K. \& Oskarsson, A. (1993). Acta Chem. Scand. 47, 554-559.
Clark, P. D., Fait, J. F., Jones, C. G. \& Kirk, M. J. (1991). Can. J. Chem. 69, 590-598.
Clark, P. D., Kirk, M. J. \& Parvez, M. (1993). Can. J. Chem. 71, 199-205.
Fowler, J. M. \& Griffiths, A. (1978a). Acta Cryst. B34, 1711-1712.
Fowler, J. M. \& Griffiths, A. (1978b). Acta Cryst. B34, 1712-1713.
Hartley, F. R. (1973). The Chemistry of Platinum and Palladium. London: Applied Science.

Herbstein, F. H., Ashkenazi, P., Kaftory, M., Kapon, M., Reisner, G. M. \& Ginsburg, D. (1986). Acta Cryst. B42, 575-601.

Ibers, J. A. \& Hamilton, W. C. (1964). Acta Cryst. 17, 781-782.
Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
Johnson, C. R., Keiser, J. E. \& Sharp, J. G. (1969). J. Org. Chem. 34, 860-864.
Melanson, R. \& Rochon, F. D. (1988). Acta Cryst. C44, 1893-1895.
Molecular Structure Corporation (1988). MSC/AFC Diffractometer Control Software. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
Molecular Structure Corporation (1992). TEXSAN. Single Crystal Structure Analysis Software. Version 1.6. MSC, 3200 Research Forest Drive, The Woodlands, TX 77381, USA.
North, A. C. T., Phillips, D. C. \& Mathews, F. S. (1968). Acta Cryst. A24, 351-359.
Parvez, M., Fait, J. F., Clark, P. D. \& Jones, C. G. (1993). Acta Cryst. C49, 376-377.
Schagen, J. D., Straver, L., van Meurs, F. \& Williams, G. (1988). Enraf-Nonius CAD-4 Diffractometer Controlling Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Walker, N. \& Stuart, D. (1983). Acta Cryst. A39, 158-166.

Acta Cryst. (1995). C51, 1102-1 105

$\left[M\left(\mathrm{CNMe}_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}(\boldsymbol{M}=\mathbf{P t}, \mathrm{Pd})\right.$

John G. Crossley and A. Guy Orpen

School of Chemistry, University of Bristol, Bristol BS8 1TS, England

(Received 17 October 1994; accepted 13 December 1994)

Abstract

The compounds tetrakis(methyl isocyanide)platinum bis(hexafluorophosphate), $\left[\mathrm{Pt}(\mathrm{CNMe})_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}$, and tetrakis(methyl isocyanide)palladium bis(hexafluorophosphate), $\left[\mathrm{Pd}(\mathrm{CNMe})_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}$, are isostructural; both crystallize with a tetragonal unit cell with a simple ionic packing arrangement related to that of NaCl .

Comment

No simple salts of tetrakis(methyl isocyanide)-transition metal complexes have been structurally characterized, apart from $\left[\mathrm{Cu}(\mathrm{CNMe})_{4}\right] \mathrm{BF}_{4}$, in which the Cu atom has a tetrahedral arrangement of CNMe ligands (Spek, 1982). The structures of $\left[M(\mathrm{CNMe})_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}[M=\mathrm{Pt}(1)$ and Pd (2)] were determined to allow a comparison of the cation geometry with that previously found in complex salts of general formula $\left[M(\mathrm{CNMe})_{4}\right]\left[M^{\prime}(\mathrm{mnt})_{2}\right]_{n}$ $\left\{\mathrm{mnt}=\left[\mathrm{S}_{2} \mathrm{C}_{2}(\mathrm{CN})_{2}\right]^{2-} ; M, M^{\prime}=\mathrm{Pt}, \mathrm{Pd} ; n=1\right.$ or 2$\}$ (Connelly, Crossley, Orpen \& Salter, 1992). Both compounds (1) and (2) crystallize in the tetragonal space group $P 4 / \mathrm{mbm}$ and have essentially identical structures.

(1) $M=\mathrm{Pt}$
(2) $M=P d$

Fig. 1 shows a perspective view of (2); the same numbering scheme was used for (1). The contents of one unit cell of (2) are illustrated in Fig. 2, in which the H atoms have been omitted for clarity.

In each structure, as a consequence of the crystallographic symmetry, the four CNMe ligands are crystallographically equivalent and the cations (excepting the H atoms) are planar, having site symmetry mmm . The dimensions of the $\left[M(\mathrm{CNMe})_{4}\right]^{2+}$ cations are similar (bond lengths within 3σ) to those in the complex salts referred to above (Connelly, Crossley, Orpen \& Salter, 1992). The CNMe ligands are almost linear, with $M-\mathrm{C}-\mathrm{N}=$ 179.0 (7) for (1) and 178.0 (4) ${ }^{\circ}$ for (2), and $\mathrm{C}-\mathrm{N}-\mathrm{Me}$ $=176.7$ (8) for (1) and $178.0(5)^{\circ}$ for (2). There are two distinct $\left(\mathrm{PF}_{6}\right)^{-}$groups per structure, with site symmetries $4 / m$ and $m m m$ for $\mathrm{P}(1)$ and $\mathrm{P}(2)$, respectively. As a result, the $\mathrm{F}-\mathrm{P}(1)-\mathrm{F}$ angles are exactly 90 or 180°.

In both structures, the ions are arranged such that the metal atoms occupy positions $\left(0, \frac{1}{2}, 0\right)$ and $\left(\frac{1}{2}, 0\right.$,

0) (Wyckoff site d), the C and N atoms lie on mirror planes (Wyckoff site k), and a P atom, $\mathrm{P}(1)$, of one of the $\left(\mathrm{PF}_{6}\right)^{-}$groups is found at $(0,0,0)$ and $\left(\frac{1}{2}, \frac{1}{2}, 0\right)$ (Wyckoff site a), i.e. the ($x, y, 0$) plane contains a layer of alternate cations and anions. In between this plane and its equivalent $(x, y, 1)$ plane, is a layer containing the second type of $\left(\mathrm{PF}_{6}\right)^{-}$group, with the P atoms $[\mathrm{P}(2)]$ at positions $\left(0, \frac{1}{2}, \frac{1}{2}\right)$ and $\left(\frac{1}{2}, 0, \frac{1}{2}\right)$ (Wyckoff site c), but with the ($0,0, \frac{1}{2}$) and $\left(\frac{1}{2}, \frac{1}{2}, \frac{1}{2}\right)$ sites (Wyckoff site b) unoccupied. This structure is based, therefore, on the NaCl arrangement, but with cations absent from each alternate layer along the z axis. This appears to be a new type of crystal packing for $A B_{2}$-type salts (Wells, 1975). The vacant b sites have short contacts with four F atoms [all to $\mathrm{F}(3) 3.181 \AA$]. As expected, there are no significant metal-metal interactions and no linear stacked structure, in contast to those found for salts of $\left[M(\mathrm{CNMe})_{4}\right]^{2+}$ with complex planar anions (Connelly, Crossley, Orpen \& Salter, 1992). The closest inter-metal distances are equal to $\left(a / 2^{1 / 2}\right)$, i.e. $\mathrm{Pt}-\mathrm{Pt}=6.713 \AA$ for (1) and $\mathrm{Pd}-\mathrm{Pd}=6.671 \AA$ for (2). Within the ($x, y, 0$) planes, the anions and cations are linked by four weak $M \cdots F(2)$ contacts of 3.421 in (1) and $3.385 \AA$ in (2). The $M \cdots \mathrm{~F}$ contacts for the other PF_{6} anion are weaker [4.085 in (1) and $4.128 \AA$ in (2)]. The latter PF_{6} shows the larger displacement parameters in both (1) and (2).

Fig. 2. A view of the unit-cell contents of $\left[\mathrm{Pd}(\mathrm{CNMe})_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}$, (2). H atoms are omitted for clarity.

Experimental

Colourless block-shaped crystals of (1) and (2) were grown by diffusion of diethyl ether into solutions of the complexes in acetonitrile.

Compound (1)
Crystal data
$\left[\mathrm{Pt}^{\left.\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}}\right.$
$M_{r}=649.2$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$

Tetragonal
P4/mbm
$a=9.494$ (1) \AA
$c=11.203(2) \AA$
$V=1009.8(3) \AA^{3}$
$Z=2$
$D_{x}=2.135 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection

Siemens P3m diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical [azimuthal ($\equiv \psi$) scan]
$T_{\text {min }}=0.187, T_{\text {max }}=$ 0.276

1474 measured reflections
670 independent reflections 454 observed reflections
$[I>2 \sigma(I)]$

Refinement

Refinement on F
$R=0.0287$
$w R=0.0339$
$S=1.20$
454 reflections
46 parameters
H atoms riding with $\mathrm{C}-$ $\mathrm{H}=0.96 \AA$ and $U(\mathrm{H})=$ $0.08 \AA^{2}$

Cell parameters from 36 reflections
$\theta=5-15^{\circ}$
$\mu=7.213 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Regular block
$0.35 \times 0.3 \times 0.3 \mathrm{~mm}$
Colourless
$R_{\text {int }}=0.0432$
$\theta_{\text {max }}=27.5^{\circ}$
$h=0 \rightarrow 12$
$k=0 \rightarrow 12$
$l=0 \rightarrow 14$
3 standard reflections monitored every 50 reflections intensity decay: 2%

$$
w=1 /\left[\sigma_{c}^{2}(F)+0.0005 F^{2}\right]
$$

$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=0.53 \mathrm{e} \AA^{-3}$
$\Delta \rho_{\text {min }}=-1.27 \mathrm{e}^{\AA^{-3}}$
Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Tetragonal
P4/mbm
$a=9.434$ (2) \AA
$c=11.270$ (3) \AA
$V=1003.0(4) \AA^{3}$
$Z=2$
$D_{x}=1.856 \mathrm{Mg} \mathrm{m}^{-3}$

Data collection
Siemens $P 3 m$ diffractometer
$\omega / 2 \theta$ scans
Absorption correction:
empirical [azimuthal ($\equiv \psi$)
scan]
$T_{\text {min }}=0.385, T_{\text {max }}=$ 0.455

1138 measured reflections
510 independent reflections 424 observed reflections
[$I>2 \sigma(I)]$

Refinement

Refinement on F
$R=0.0289$
$w R=0.0466$
$S=1.817$
424 reflections
46 parameters
H atoms riding with C $\mathrm{H}=0.96 \AA$ and $U(\mathrm{H})=$ $0.08 \AA^{2}$

Cell parameters from 21 reflections
$\theta=5-15^{\circ}$
$\mu=1.17 \mathrm{~mm}^{-1}$
$T=293 \mathrm{~K}$
Regular block
$0.65 \times 0.45 \times 0.45 \mathrm{~mm}$ Colourless
$R_{\text {int }}=0.0144$
$\theta_{\text {max }}=25^{\circ}$
$h=0 \rightarrow 11$
$k=0 \rightarrow 11$
$l=0 \rightarrow 13$
3 standard reflections
monitored every 50 reflections
intensity decay: 1%

$$
w=1 /\left[\sigma_{c}^{2}(F)+0.0005 F^{2}\right]
$$

$$
(\Delta / \sigma)_{\max }=0.002
$$

$$
\Delta \rho_{\text {max }}=0.54 \mathrm{e}^{-3}
$$

$$
\Delta \rho_{\min }=-0.46 \mathrm{e} \AA^{-3}
$$

Extinction correction: none
Atomic scattering factors from International Tables for X-ray Crystallography (1974, Vol. IV)

Table 1. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (1)

$$
U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i}, \mathbf{a}_{j}
$$

	x	y	z	U_{eq}
$\mathrm{Pl}(1)$	0	$-1 / 2$	0	$0.042(1)$
$\mathrm{P}(1)$	0	0	0	$0.053(1)$
$\mathrm{P}(2)$	$1 / 2$	0	$1 / 2$	$0.055(1)$
$\mathrm{F}(1)$	0	0	$0.1421(9)$	$0.114(3)$
$\mathrm{F}(2)$	$-0.0777(7)$	$-0.1481(6)$	0	$0.087(3)$
$\mathrm{F}(3)$	$0.5030(7)$	$-0.1648(10)$	$1 / 2$	$0.162(6)$
$\mathrm{F}(4)$	$1 / 2$	0	$0.3645(10)$	$0.226(10)$
$\mathrm{N}(1)$	$0.1678(5)$	$x-1 / 2$	$0.1896(6)$	$0.055(2)$
$\mathrm{C}(1)$	$0.1072(6)$	$x-1 / 2$	$0.1227(7)$	$0.047(2)$
$\mathrm{C}(2)$	$0.2508(6)$	$x-1 / 2$	$0.2711(10)$	$0.088(4)$

Table 2. Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$ for (1)

$\mathrm{Pt}(1)-\mathrm{C}(1)$	$1.990(8)$	$\mathrm{P}(2)-\mathrm{F}(4)$	$1.518(11)$
$\mathrm{P}(1)-\mathrm{F}(1)$	$1.592(11)$	$\mathrm{N}(1)-\mathrm{C}(1)$	$1.107(10)$
$\mathrm{P}(1)-\mathrm{F}(2)$	$1.588(6)$	$\mathrm{N}(1)-\mathrm{C}(2)$	$1.440(12)$
$\mathrm{P}(2)-\mathrm{F}(3)$	$1.565(10)$		
$\mathrm{C}(1)-\mathrm{Pt}(1)-\mathrm{C}\left(1^{\mathrm{i}}\right)$	$92.7(4)$	$\mathrm{F}(3)-\mathrm{P}(2)-\mathrm{F}\left(3^{\mathrm{ii}}\right)$	$92.1(5)$
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	$176.7(8)$	$\mathrm{Pt}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	$179.0(7)$
Symmetry code: (i) $-\frac{1}{2}-y,-\frac{1}{2}-x, z ;$ (ii) $\frac{1}{2}+y, x-\frac{1}{2}, 1-z$			

Compound (2)

Crystal data
$\left[\mathrm{Pd}\left(\mathrm{C}_{2} \mathrm{H}_{3} \mathrm{~N}\right)_{4}\right]\left(\mathrm{PF}_{6}\right)_{2}$
$M_{r}=560.5$

Mo $K \alpha$ radiation
$\lambda=0.71073 \AA$

Table 3. Fractional atomic coordinates and equivalent isotropic displacement parameters $\left(\AA^{2}\right)$ for (2)

$$
U_{\mathrm{eq}}=(1 / 3) \Sigma_{i} \Sigma_{j} U_{i j} a_{i}^{*} a_{j}^{*} \mathbf{a}_{i} \cdot \mathbf{a}_{j}
$$

	x	y	z	$U_{\text {eq }}$
	0	$-1 / 2$	0	$0.043(1)$
$\mathrm{Pd}(1)$	0	0	0	$0.054(1)$
$\mathrm{P}(1)$	0	0	$1 / 2$	$0.054(1)$
$\mathrm{P}(2)$	$1 / 2$	0	$0.1397(5)$	$0.108(2)$
$\mathrm{F}(1)$	0	$-0.1494(3)$	0	$0.082(1)$
$\mathrm{F}(2)$	$-0.0761(3)$	$1 / 2$	$0.150(3)$	
$\mathrm{F}(3)$	$0.5043(5)$	$-0.1639(6)$	$0.3662(6)$	$0.193(5)$
$\mathrm{F}(4)$	$1 / 2$	0	$0.1887(3)$	$0.060(1)$
$\mathrm{N}(1)$	$0.1688(3)$	$x-1 / 2$	$x-1 / 2$	$0.1223(4)$
$\mathrm{C}(1)$	$0.1067(3)$	$x-050(1)$		
$\mathrm{C}(2)$	$0.2515(4)$	$x-1 / 2$	$0.2710(7)$	$0.087(2)$

Table 4. Selected geometric parameters $\left(\AA{ }^{\circ},^{\circ}\right)$ for (2)

$\mathrm{Pd}(1)-\mathrm{C}(1)$	1.981 (4)	$\mathrm{P}(2)-\mathrm{F}(4)$	1.507 (6)
$\mathrm{P}(1)-\mathrm{F}(1)$	1.574 (6)	$\mathrm{N}(1)-\mathrm{C}(1)$	1.117 (6)
$\mathrm{P}(1)-\mathrm{F}(2)$	1.582 (3)	$\mathrm{N}(1)-\mathrm{C}(2)$	1.441 (8)
$\mathrm{P}(2)-\mathrm{F}(3)$	1.546 (5)		
$\mathrm{C}(1)-\mathrm{Pd}(1)-\mathrm{C}\left(1^{\text {i }}\right.$)	91.8 (3)	$\mathrm{F}(3)-\mathrm{P}(2)-\mathrm{F}\left(3^{\text {ii }}\right)$	93.0 (4)
$\mathrm{C}(1)-\mathrm{N}(1)-\mathrm{C}(2)$	178.0 (5)	$\mathrm{Pd}(1)-\mathrm{C}(1)-\mathrm{N}(1)$	178.0 (4)
Symmetry codes: (i) $-\frac{1}{2}-y,-\frac{1}{2}-x, z ;$ (ii) $\frac{1}{2}+y, x-\frac{1}{2}, 1-z$.			

Computations were performed using the SHELXTL-Plus package (Sheldrick, 1990).

We thank the SERC for financial support.

Lists of structure factors, anisotropic displacement parameters and H -atom coordinates have been deposited with the IUCr (Reference: MU1154). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

Connelly, N. G., Crossley, J. G., Orpen, A. G. \& Salter, H. (1992). J. Chem. Soc. Chem. Commun. pp. 1564-1568.
Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.
Spek, A. L. (1982). Cryst. Struct. Commun. 11, 413-416.
Wells, A. F. (1975). In Structural Inorganic Chemistry. Oxford: Clarendon Press.

Acta Cryst. (1995). C51, 1105-1106

trans-Chloromethylbis(triphenylarsine)platinum(II)

Andreas Roodt, Stefanus Otto and
Johann G. Leppoldt \dagger

Department of Chemistry, University of the Orange Free State, Bloemfontein 9300, South Africa
(Received 24 October 1994; accepted 13 December 1994)

Abstract

The title compound, trans-chloromethylbis(triphenylarsine)platinum(II), trans- $\left[\mathrm{PtCl}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{As}\right)_{2}\right]$, is isomorphous and isostructural with one of the two known crystalline forms of the corresponding triphenylphosphine analogue.

Comment

trans-Bis(triphenylarsine)chloromethylplatinum(II), (I), is one of the few bis $\left(\mathrm{As}_{3}\right)$-platinum(II) complexes (where X is alkyl or aryl) isolated to date. It is isomorphous and isostructural with the analogous bis(triphenylphosphine) complex described by Bardi \& Piazzesi (1981). However, a second crystalline form of the bis(triphenylphosphine) complex has recently been shown to exist (Otto, Roodt \& Leipoldt, 1995).

\dagger Deceased.
© 1995 International Union of Crystallography
Printed in Great Britain - all rights reserved

The trans influence of the methyl group is marginally less pronounced in (I) than it is in the bis $\left(\mathrm{PPh}_{3}\right)$ complex; $\mathrm{Pt}-\mathrm{Cl}$ bond distances of 2.431 (3) and 2.415 (5) \AA found in the above mentioned studies of the $\operatorname{bis}\left(\mathrm{PPh}_{3}\right)$ complex may be compared with the slightly shorter distance of 2.410 (2) \AA obtained from this study. This is in agreement with the electronic influence $\mathrm{PPh}_{3}>$ AsPh_{3} (Cheeseman, Odell \& Raethel, 1968). The Pt Cl bond is shorter than that of 2.437 (2) \AA found in trans-[PtClMe $\left.\left(\mathrm{AsMe}_{3}\right)_{2}\left(\eta^{2}-\mathrm{F}_{3} \mathrm{CC}_{2} \mathrm{CF}_{3}\right)\right]$ (Davies, Puddephatt \& Payne, 1972). The larger steric demand of the methyl group (C1) compared with that of the chloro ligand is illustrated both by the As1-Pt-As2 angle [176.30 (3) ${ }^{\circ}$, which deviates significantly from 180°, and by the $\mathrm{C} 11-\mathrm{As} 1-\mathrm{Pt}$ and $\mathrm{C} 41-\mathrm{As} 2-\mathrm{Pt}$ angles, which are $c a 10^{\circ}$ greater than the ideal tetrahedral angle of 109.5°.

Fig. 1. ORTEPD (Johnson, 1976) view of the title structure showing the atom-numbering scheme and 30% displacement ellipsoids. The phenyl H atoms are omitted for clarity.

Experimental

The title complex was prepared by the addition of an excess of $\left[\mathrm{As}\left(\mathrm{C}_{6} \mathrm{H}_{5}\right)_{3}\right](1.0 \mathrm{~g}, 3.3 \mathrm{mmol})$ in acetone $(20 \mathrm{ml})$ to trans- $\left[\mathrm{PtCl}\left(\mathrm{CH}_{3}\right)\left\{\mathrm{S}\left(\mathrm{CH}_{3}\right)_{2}\right\}_{2}\right](500 \mathrm{mg}, 1.35 \mathrm{mmol})$ (Scott \& Puddephatt, 1983) in acetone (10 ml). The solution was stirred for 30 min at room temperature. Filtration and recrystallization from benzene gave the desired product $(1.05 \mathrm{~g}$, yield $>90 \%$). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right): \delta\left(\mathrm{CH}_{3}\right) 0.07$ p.p.m., ${ }^{2} J(\mathrm{PtH}) 78 \mathrm{~Hz}$. IR $(\mathrm{KBr}): \nu(\mathrm{Pt}-\mathrm{Cl}) 324 \mathrm{~cm}^{-1}$. The density D_{m} was measured by flotation in $\mathrm{NaI} / \mathrm{H}_{2} \mathrm{O}$

Crystal data

$\left[\mathrm{PtCl}\left(\mathrm{CH}_{3}\right)\left(\mathrm{C}_{18} \mathrm{H}_{15} \mathrm{As}\right)_{2}\right]$
$M_{r}=858.01$
Monoclinic
$P 2_{1} / n$
$a=11.749$ (1) \AA
$b=23.342(2) \AA$
$c=12.644(2) \AA$
$\beta=111.32(1)^{\circ}$

> Mo $K \alpha$ radiation
> $\lambda=0.71073 \AA$
> Cell parameters from 25 \quad reflections
> $\theta=17-20^{\circ}$
> $\mu=6.484 \mathrm{~mm}^{-1}$
> $T=293(2) K$
> Diamond shape

